DR. ANTON MALEVICH

Aufgabe 2.2

- a) 7, 1, 792, 1287, 1225, 20475.
- b) (i) $\frac{16}{65}$, (ii) $\frac{1}{26}$, (iii) ?, (iv) $\frac{93}{130}$.

Aufgabe 2.3 a) 256, b) 0, c) 6561, d) 1024.

Aufgabe 2.4

- a) $91, 0, \frac{47}{6}, 70, -1,$
- b) 2 039 190,
- c) 494 550,
- d) 750 000,
- e) 99 900.
- f) 16 958, 570, 25 250.

Aufgabe 2.5 a) 510, b) $\frac{511}{256}$, c) 2186, d) $\frac{1330}{729}$, e) $\frac{33333333}{10000000}$, f) 8, g) 3, h) $\frac{10}{19}$, i) $\frac{70}{9}$.

Aufgabe 2.6 1, $\frac{4}{33}$, $\frac{1}{825}$, $\frac{31}{3}$, $\frac{2}{9}$, 11, $\frac{41}{33}$, $\frac{10}{99}$, $\frac{3088}{999}$.

Aufgabe 2.7 a) 1, b) 2, c) 1, d) 0, e) 2, f) 1, g) 1, h) $\frac{4}{3}$, i) 1.

Aufgabe 2.8 a) ∞ , b) ∞ , c) 1, d) -1, e) 1, f) 2, g) 0, h) 0, i) -1, j) ∞ , k) -1, l) 0.

Aufgabe 3.2 a) x = 3, b) 7x - 2y = 1, c) x + y = 4, d) x - 2y = -4, e) 7x - 2y = 1.

Aufgabe 3.3

a)
$$a = 3, b = 2\sqrt{2}, c = \sqrt{5} \text{ und } \cos \alpha = \frac{1}{\sqrt{10}}, \cos \beta = \frac{1}{\sqrt{5}}, \gamma = \frac{\pi}{4};$$

b)
$$x + y = 3$$
.

Aufgabe 3.4 $\begin{pmatrix} 11/3 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} t + \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} s$.

Aufgabe 3.5

a)
$$x - y - z = -1$$
 und $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix} s + \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} t$

b)
$$x = 0$$
 und $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} t + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} s$,

c)
$$5x - y + 2z = 0$$
 und $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} t + \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} s$,

d)
$$x + 3z = -1$$
 und $\begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} + \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} t + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} s$.

Aufgabe 3.6 a) ja, b) nein, c) nein, d) ja.

Aufgabe# **3.7** a) ja, b) ja.

Aufgabe 3.8

- a) schneiden sich entlang der Geraden $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} t;$
- b) schneiden sich im Punkt (2, -1, 1);
- c) G_1 und G_2 sind windschief, G_2 und G_3 schneiden sich im Punkt (2,2,0), G_1 und G_3 sind parallel.

Aufgabe 4.1 a) x = 1 und x = 7, b) x = 0 und x = 2, c) $x = -\frac{3}{4}$, d) $x = -2 \pm \sqrt{3}$, e) $x = -6 \pm \sqrt{30}$, f) $x = \frac{1}{2} \left(13 \pm \sqrt{197}\right)$, g) $x = \frac{3}{2} \left(2 \pm \sqrt{2}\right)$, h) $x = \frac{1}{2} \left(1 \pm \sqrt{5}\right)$, i) $x = \pm \sqrt{7}$, j) x = 9, k) $x = 3 - 2\sqrt{2}$.

Aufgabe 4.2 a)
$$x^2 + y^2 - 4 = 0$$
, b) $x^2 + y^2 + 4x - 4y = 0$, c) $x^2 + y^2 - 6x + 4y = 0$.

Aufgabe 4.3 a) ja,
$$M=(-2,1), r=2;$$
 b) ja, $M=\left(-\frac{1}{2},\frac{1}{2}\right), r=\sqrt{\frac{3}{2}};$ c) ja, $M=(-1,-1), r=\sqrt{2};$ d) ja, $M=(4,-8), r=4\sqrt{5}.$

Aufgabe 4.4

a,b)
$$\frac{1}{10} \left(-5 \pm \sqrt{15}, 5 \pm 3\sqrt{15} \right)$$
,

b,c)
$$\frac{1}{10} \left(-7 \pm 3\sqrt{11}, -1 \mp \sqrt{11} \right)$$
,

c,d)
$$(0,0)$$
 und $-\frac{1}{37}(84,60)$.

Aufgabe 4.5 15.

Aufgabe 4.6 (0,-2) und x + y = -2.

Aufgabe 4.7 a)
$$(0,1)$$
, b) $(-144,-69)$, c) $\left(-\frac{1}{4},-\frac{9}{8}\right)$, d) $\left(-\frac{27}{8},-\frac{27}{16}\right)$.

Aufgabe# **4.8** $x - y + \sqrt{2}z = 0$.

Aufgabe# **4.9**
$$g(x) = \frac{1}{4}x^2 - \frac{3}{2}x + 5$$
, $k(x) = \frac{3}{8}x^2 - \frac{3}{4}x$.

Aufgabe 5.1 a) $-\frac{\sqrt{2}}{2}$, b) $\frac{\sqrt{3}}{2}$, c) 1, d) $\frac{1}{2}$, e) 0, f) $\sqrt{3}$, g) $\sqrt{3}$.

Aufgabe 5.2

a)
$$\sin \alpha = \frac{1}{5}$$
, $\cos \alpha = \frac{2\sqrt{6}}{5}$, $\tan \alpha = \frac{\sqrt{6}}{12}$;

b)
$$\sin \alpha = \frac{3\sqrt{5}}{7}, \cos \alpha = \frac{2}{7}, \tan \alpha = \frac{3\sqrt{5}}{2};$$

c)
$$\sin \alpha = \frac{3}{8}, \cos \alpha = \frac{\sqrt{55}}{8}, \tan \alpha = \frac{3\sqrt{55}}{55};$$

d)
$$\sin \alpha = \frac{3}{4}$$
, $\cos \alpha = \frac{\sqrt{7}}{4}$, $\tan \alpha = \frac{3\sqrt{7}}{7}$;

e)
$$\sin \alpha = \frac{\sqrt{35}}{6}$$
, $\cos \alpha = \frac{1}{6}$, $\tan \alpha = \sqrt{35}$;

f)
$$\sin \alpha = \frac{1}{8}$$
, $\cos \alpha = \frac{3\sqrt{7}}{8}$, $\tan \alpha = \frac{\sqrt{7}}{21}$;

g)
$$\sin \alpha = \frac{\sqrt{5}}{3}$$
, $\cos \alpha = \frac{2}{3}$, $\tan \alpha = \frac{\sqrt{5}}{2}$;

h)
$$\sin \alpha = \frac{\sqrt{7}}{3}$$
, $\cos \alpha = \frac{\sqrt{2}}{3}$, $\tan \alpha = \frac{\sqrt{14}}{2}$;

i)
$$\sin \alpha = \frac{\sqrt{10}}{4}$$
, $\cos \alpha = \frac{\sqrt{6}}{4}$, $\tan \alpha = \frac{\sqrt{15}}{3}$.

Aufgabe 5.3

a)
$$\alpha = \frac{\pi}{4}$$
, $\beta = \frac{\pi}{3}$, $\gamma = \frac{5\pi}{12}$, $c = 1$, $a = \sqrt{3} - 1$, $b = \frac{\sqrt{6}}{1 + \sqrt{3}} = \sqrt{6 - 3\sqrt{3}}$, $F = \frac{1}{4}(3 - \sqrt{3})$;

b)
$$\alpha = \frac{2\pi}{3}$$
, $\sin \beta = \frac{\sqrt{21}}{7}$, $\sin \gamma = \frac{\sqrt{21}}{14}$, $c = 1$, $b = 2$, $a = \sqrt{7}$, $F = \frac{\sqrt{3}}{2}$;

c)
$$a = b = c = \sqrt{2}$$
, $\alpha = \beta = \gamma = \frac{\pi}{3}$, $F = \frac{\sqrt{3}}{2}$;

d) ?

e)
$$a = 5, b = 12, c = 13, \gamma = \frac{\pi}{2}, \sin \alpha = \frac{5}{13}, \sin \beta = \frac{12}{13}, F = 30;$$

f#)
$$\gamma = \frac{\pi}{2}$$
, $\alpha = \alpha$, $\beta = \frac{\pi}{2} - \alpha$, $a = 11$, $b = \frac{11}{\sin \alpha}$, $c = \frac{11}{\tan \alpha}$, $F = \frac{121}{2\tan \alpha}$.

Aufgabe 5.5 a) $\frac{\sqrt{2-\sqrt{2}}}{2}$, b) $\frac{\sqrt{2+\sqrt{2}}}{2}$, c) $\frac{\sqrt{2+\sqrt{2}}}{2}$, d) $\frac{\sqrt{2-\sqrt{2}}}{2}$, e) $\frac{\sqrt{2+\sqrt{2}}}{2}$, f) $2-\sqrt{3}$.

Aufgabe 5.7

a)
$$x = \pm \frac{\pi}{3} + 2\pi k, k \in \mathbb{Z};$$

b)
$$x = \pm \frac{5\pi}{6} + 2\pi k, k \in \mathbb{Z};$$

c)
$$x = -\frac{\pi}{3} + \pi k, k \in \mathbb{Z};$$

d)
$$x = \pm \frac{\pi}{2} + 2\pi k, k \in \mathbb{Z}.$$

Aufgabe 5.8 a) $\frac{\pi}{2}$, b) $-\frac{\pi}{4}$, c) $\frac{\pi}{4}$, d) $\frac{5\pi}{6}$, e) $\frac{2\pi}{3}$, f) $\frac{5\pi}{4}$.

Aufgabe 5.9 a) $\frac{\pi}{14}$, b) $-\frac{\pi}{6}$, c) $-\frac{\pi}{10}$, d) $-\frac{\pi}{5}$.

Aufgabe 6.1 a) (-4, -8) und (1, 2), b) (1, 1) und $(\frac{5}{2}, -2)$, c) (-2, 4) und (0, 2).

Aufgabe 6.2 a) 2^{243} , b) $2 \cdot 6^x$, c) 3^{x-1} , d) 10^{4x+2} , e) 4^{x+1} .

Aufgabe 6.4 a) $-\log_3 \frac{4}{3}$, b) 0, c) $\frac{3}{2}$, d) $6(\log_5 2)^2$, e) $7\log_{10} 2$, f) $\log_2 15$.

Aufgabe 6.6 a) y = 2x - 3, b) y = x - 3, c) $y = \frac{29}{4}x - 22$, d) $y = e^2(x - 1)$, e) y = 1, f) y = x, g) $y = \left(\frac{e}{2} + \frac{1}{2e}\right)x - \frac{1}{e}$.

Aufgabe 7.1 a)
$$16x^3 - 6x$$
, b) $\frac{3\sqrt{x}}{2}$, c) $\frac{7\sqrt{x^7}}{2x}$, d) $-\frac{45}{2\sqrt{x^{11}}}$, e) $\frac{1+2x}{2\sqrt{x^2+x}}$, f) $x\cos x + \sin x$, g) $\frac{x\ln x + 2x + 2}{2x\sqrt{1+x}}$, h) $\frac{x}{\tan x} + \ln(\sin x)$, i) $-xe^x(x-2)$, j) $\frac{2}{\cos(4-2x)}$ k) $\frac{1}{2\sqrt{x}(1+x)}$, l) $\frac{e^{1+\sqrt{x}}}{2\sqrt{x}}$, m) $\frac{1}{(1+x)^2}$, n) $\frac{1-x^2}{(1+x^2)^2}$, o) $\frac{1}{\sin x} \left(\frac{1}{x} - \frac{\ln x}{\tan x}\right)$.

f)
$$x \cos x + \sin x$$
, g) $\frac{x \ln x + 2x + 2}{2x\sqrt{1+x}}$, h) $\frac{x}{\tan x} + \ln(\sin x)$, i) $-xe^x(x-2)$, j) $\frac{2}{\cos(4-2x)^2}$

k)
$$\frac{1}{2\sqrt{x}(1+x)}$$
, l) $\frac{e^{1+\sqrt{x}}}{2\sqrt{x}}$, m) $\frac{1}{(1+x)^2}$, n) $\frac{1-x^2}{(1+x^2)^2}$, o) $\frac{1}{\sin x} \left(\frac{1}{x} - \frac{\ln x}{\tan x}\right)$

Aufgabe 7.2 a) x = 1, b) x = 2, c) x = 0, d) x = 0, e) $x = \pm 1$, f) x = 0, g) $x = \pi k, k \in \mathbb{Z}$.

Aufgabe 7.3

a)
$$\frac{1}{2\sqrt{x+1}}$$
, $\frac{1}{4\sqrt{(x+1)^3}}$; e) $\frac{1}{\cos^2 x}$, $\frac{2\tan x}{\cos^2 x}$;

b)
$$\frac{2}{(x+1)^2}$$
, $-\frac{4}{(x+1)^3}$; f) $\frac{1}{x^2+1}$, $-\frac{2x}{(x^2+1)^2}$;

c)
$$\frac{2x}{x^2+1}$$
, $\frac{2(x^2-1)}{(x^2+1)^2}$; g) $\frac{x\cos x - \sin x}{x^2}$, $\frac{2x\cos x + (x^2-2)\sin x}{x^3}$;

d)
$$2x(\cos 2x - x \sin 2x)$$
,
 $(4x^2 - 2)(8x \sin 2x - \cos 2x)$; h) $\sin 2x$, $2\cos 2x$.

Aufgabe 7.4 a)
$$(-1)^n e^{-x}$$
, b) $2^n e^{2x}$, c) $\frac{(-1)^n (n+1)!}{(x+1)^{n+1}}$, d) $(-1)^n e^{-x} (x-n)$, e) $10 \cdot 9 \cdots (10-n+1) \cdot x^{10-n}$ für $n \le 10$, sonst 0.

Aufgabe 7.5 a) überall monoton wachsend; b) überall monoton wachsend; c) monoton wachsend auf $(-\infty,0)$, monoton fallend auf $(0,\infty)$; d) monoton fallend auf $(-\infty,0)$, monoton wachsend auf $(0, \infty)$.

Aufgabe 7.6

- a) $\left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{6}\right)$ lokales Maximum, $\left(\frac{\sqrt{3}}{3}, -\frac{\sqrt{3}}{6}\right)$ lokales Minimum;
- b) (0,1) lokales Minimum;
- c) $(\frac{1}{6}, -\frac{1}{6})$ lokales Minimum;
- d) $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2e}}{2e}\right)$ lokales Minimum, $\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2e}}{2e}\right)$ lokales Maximum.

Aufgabe 7.7

a)
$$\min_{x \in [0,\sqrt{\pi}]} f(x) = 0$$
, $\max_{x \in [0,\sqrt{\pi}]} f(x) = 1$;

b)
$$\max_{x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} f(x) = 0$$
, Minimum wird nicht erreicht;

c)
$$\min_{x \in [-1,5]} f(x) = -1, \max_{x \in [-1,5]} f(x) = 575;$$

d)
$$\min_{x \in [-5,5]} f(x) = -e^4$$
, $\max_{x \in [-5,5]} f(x) = 0$

Aufgabe# 7.8 $\left(\frac{4}{3}, -\frac{\sqrt[3]{4}}{2}\right)$ lokales Minimum; (2,0) lokales Maximum.

$Aufgabe^{\#} 7.9$

- a) (3,0) lokales Minimum, (0,9) lokales Minimum, (1,4e) lokales Maximum, $\min_{x \in [-1,4]} f(x) = 0, \ \max_{x \in [-1,4]} f(x) = e^4.$
- b) $\left(\frac{1}{e}, -2\right)$ lokales Minimum, (0,0) lokales Maximum, $\min_{x \in [-1,2]} f(x) = -2, \max_{x \in [-1,2]} f(x) = 4e \ln 2.$

Aufgabe 8.1 a) $2 - \frac{4\sqrt{2}}{3}$, b) $\frac{15}{8} + \ln 4$, c) 16, d) $-2 - \frac{\pi^2}{2}$, e) $\frac{3}{\ln 2}$, f) e - 1, g) $\ln \frac{3}{2}$, h) $-\sqrt{3}$, i) $\frac{9}{8}$, j) $-\ln 2$, k) $-\frac{2\ln 2}{3}$, l) $4 - 2\sqrt{2}$, m) $x + \frac{x^2}{2} - \frac{2x^3}{3} + x^4$, n) $3x - \frac{x^4}{2}$, o) $\frac{2}{x} + \frac{2\sqrt{x^3}}{3}$, p) $-\frac{1}{3}\cos 3x$, q) $\frac{x}{2} - \frac{1}{4}\sin 2x$, r) $\frac{x}{2} + \frac{\sin x}{2}$.

Aufgabe 8.2 a) $\frac{1023}{10}$, b) 868, c) $\frac{1}{2}$, d) $\frac{e^4-1}{2e}$, e) $\frac{e-1}{2}$, f) $-\frac{\pi}{4} + \arctan e$, g) $\frac{3\sqrt{3}}{2}$, h) 0, i) $2\sin\sqrt{\pi}$, j) $1-\cos 1$, k) $\frac{116}{15}$, l) $\ln\frac{16}{9}$, m) $\frac{81}{8}$, n) $-\frac{\ln 2}{2}$.

Aufgabe 8.3 a) 2, b) $\frac{e^2+1}{4}$, c) $\frac{2e^3+1}{9}$, d) 1.

Aufgabe 8.4 a) $\frac{8}{3} - \sqrt{3}$, b) $1 - \ln 2 + e \ln 2$, c) $\frac{2}{9} \left(2 + \sqrt{e^3}\right)$, d) $\frac{\pi}{2}$, e) $\frac{\pi - \ln 4}{4}$, f) $\frac{e-1}{2e}$.

Aufgabe 8.5 a) $\frac{2\sqrt{2}}{3}$, b) $\frac{5}{12}$, c) 1.

Aufgabe 9.1 a) wahr, b) falsch, c) falsch, d) wahr, e) wahr, f) falsch, g) wahr, h) falsch, i) wahr.

Aufgabe 9.2 a) $A \wedge B \wedge C \Rightarrow D$, b) $A \wedge \neg B \wedge \neg C \Rightarrow \neg D$, c) $A \wedge B \wedge C \Leftrightarrow D$,

Aufgabe 9.3 a) $A \wedge B \wedge C \wedge \neg D$, b) $A \wedge \neg B \wedge \neg C \wedge D$, c) $(A \wedge B \wedge C \wedge \neg D) \vee ((\neg A \vee \neg B \vee \neg C) \wedge D)$.

Aufgabe 9.5

$$(A \cap B) \cup C = \{1, 2, 3, 5, 6\},$$

$$(B \cap C) \cup A = \{1, 2, 3\},$$

$$(C \cap A) \cup B = \{1, 2, 3, 4\},$$

$$A \cap (B \cup C) = \{1, 2, 3\},$$

$$B \cap (C \cup A) = \{1, 2, 3\},$$

$$C \cap (A \cup B) = \{1, 2\}.$$

Aufgabe 9.6

$$\begin{split} \mathcal{P}(\varnothing) &= \{\varnothing\}, \\ \mathcal{P}(\underline{1}) &= \big\{\varnothing, \{1\}\big\}, \\ \mathcal{P}(\underline{2}) &= \big\{\varnothing, \{1\}, \{2\}, \{1, 2\}\big\}. \end{split}$$

Aufgabe 10.2

- a) $n^3 + 2n$ ist für alle $n \in \mathbb{N}$ durch 3 teilbar.
 - IA) n = 1: $1^3 + 2 = 3$ ist durch 3 teilbar. \checkmark
 - IV) Es gelte die Aussage für ein beliebiges fixes $n \in \mathbb{N}$.
 - IS) $n \mapsto n+1$:

$$(n+1)^3 + 2(n+1) = n^3 + 3n^2 + 3n + 1 + 2n + 2 = 3 \cdot (n^2 + n + 1) + (n^3 + 2n)$$

Der erste Summand ist ein Vielfaches von 3, der zweite ist nach IV durch 3 teilbar. \checkmark

b)
$$\sum_{m=2}^{n} \frac{1}{(m-1)m} = 1 - \frac{1}{n}$$
.

- IA) n=2 (Für n=1 ist die Summe nicht definiert!): $\frac{1}{2}=1-\frac{1}{2}$. \checkmark
- IV) Es gelte die Aussage für ein beliebiges fixes $n \in \mathbb{N}$.
- IS) $n \mapsto n+1$:

$$\begin{split} \sum_{m=2}^{n+1} \frac{1}{(m-1)m} &= \sum_{m=2}^{n} \frac{1}{(m-1)m} + \frac{1}{n(n+1)} \\ &\stackrel{\text{IV}}{=} 1 - \frac{1}{n} + \frac{1}{n(n+1)} = 1 - \frac{(n+1)-1}{n(n+1)} = 1 - \frac{1}{n+1}. \end{split}$$

- c) $n^2 \ge 2n + 2$ für alle $n \ge 3$.
 - IA) $n = 3: 9 \ge 8.$
 - IV) Es gelte die Aussage für ein beliebiges fixes $3 \le n \in \mathbb{N}$.
 - IS) $n \mapsto n+1$:

$$(n+1)^2 = n^2 + 2n + 1 \stackrel{\text{IV}}{\geq} (2n+2) + 2n + 1 \geq 2(n+1) + 2,$$

wobei die letzte Ungleichung wegen $2n+1\geq 2$ für alle $n\geq 3$ stimmt. \checkmark

- d) $n^2 1$ ist für alle ungerade $n \in \mathbb{N}, n \ge 3$ durch 8 teilbar.
 - IA) n = 3: 8 ist durch 8 teilbar. \checkmark
 - IV) Es gelte die Aussage für ein beliebiges fixes ungerades $3 \leq n \in \mathbb{N}$.
 - IS) $n \mapsto n + 2$ (ungerade!):

$$(n+2)^2 - 1 = n^2 + 4n + 4 - 1 = (n^2 - 1) + 4(n+1).$$

Nach IV ist n^2-1 durch 8 teilbar. Da n ungerade ist, ist n+1 gerade, somit 4(n+1) durch 8 teilbar. Beide Summanden durch 8 teilbar \Rightarrow Summe durch 8 teilbar. \checkmark

 $e^{\#}$) $2^n \ge n^2 - 1$ für alle $n \in \mathbb{N}$.

IA)
$$n = 1: 2 \ge 0;$$
 $n = 2: 4 \ge 3;$ $n = 3: 8 \ge 8.$

IV) Es gelte die Aussage für ein beliebiges fixes $3 \le n \in \mathbb{N}$.

IS)
$$n \mapsto n+1$$
:

$$2^{(n+1)} = 2 \cdot 2^n \stackrel{\text{IV}}{\geq} 2(n^2 - 1) = 2n^2 - 2 = n^2 + n^2 - 2$$

$$\stackrel{\text{Teil d)}}{\geq} n^2 + (2n+2) - 2 = n^2 + 2n = (n+1)^2 - 1.$$

Aufgabe 10.3

g) $3^{2n+1} + 2^{n-1}$ ist für alle $n \in \mathbb{N}$ durch 7 teilbar.

IA)
$$n = 1: 3^3 + 2^0 = 28$$
 ist durch 7 teilbar. \checkmark

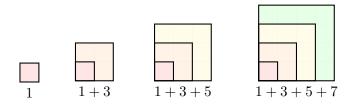
IV) Es gelte die Aussage für ein beliebiges fixes $n \in \mathbb{N}$.

IS)
$$n \mapsto n+1$$
:

$$3^{2(n+1)+1} + 2^{(n+1)-1} = 3^{2n+3} + 2^n = 9 \cdot 3^{2n+1} + 2 \cdot 2^{n-1}$$
$$= 7 \cdot 3^{2n+1} + 2 \cdot 3^{2n+1} + 2 \cdot 2^{n-1} = 7 \cdot 3^{2n+1} + 2(3^{2n+1} + 2^{n-1})$$

Der erste Summand ist ein Vielfaches von 7, der zweite ist nach IV durch 7 teilbar. \checkmark

Aufgabe 10.4



Vermutung: $\sum_{k=1}^{n} (2k-1) = n^2$ für alle $n \in \mathbb{N}$.

IA)
$$n = 1$$
: $1 = 1$

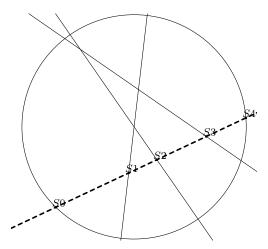
IV) Es gelte die Formel für ein beliebiges fixes $n \in \mathbb{N}$.

IS)
$$n \mapsto n+1$$
:

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + (2(n+1)-1) \stackrel{\text{IV}}{=} n^2 + (2n+1) = (n+1)^2.$$

Aufgabe[#] 10.5 Wir stellen uns die Pizza als ein Kreis da, und die Schnitte als Geraden, die den Kreis in zwei Punkten schneiden. Der Trick ist nun zu verstehen, wieviele neue Stücke maximal nach dem n-ten Schnitt entstehen können. Klar entstehen nach dem ersten Schnitt maximal 2 Stücke, nach dem zweiten können wieder maximal zwei neue entstehen. Angenommen, es sind bereits n-1 Schnitte gemacht worden $(n \ge 2)$, wir haben also $n-1 \ge 1$ Geraden. Wir betrachten die neue, n-te, Gerade. Diese schneidet sich im besten Fall mit allen n-1 bisherigen Geraden innerhalb des Kreises. Bezeichnen wir die Schnittpunkte S_1, \ldots, S_{n-1} , so sind die Stücke zwischen 2 benachbarten Schnittpunkten sowie links von S_1 und rechts von S_{n-1} (siehe Bild) in zwei geteilt. Somit entstehen maximal n neue Stücke beim n-ten $(n \ge 2$ Schnitt).

Insgesamt erhalten wir somit maximal $2+2+3+\ldots+n=1+\frac{1}{2}n(n+1)$ Stücke nach n Schnitten.



Aufgabe 10.6 a) (i) 15, (ii) 43200; b) 210; c) 576; d) (i) 120, (ii) 60, (iii) 420, (iv) 83160; e) 5040; f) $\frac{(28)!}{(7!)^4}$; g) 15625; h) 16; i) 945.